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It is well known that in the case of magnet ic  field t e rmina t ion  at the end of the electrode zone the cur ren t  
crossflow in the longitudinal sect ion of the channel reduces the value of the power and leads to reduct ion of the 
genera tor  efficiency [1, 2]. In order  to exclude the end losses ,  it has been suggested [3,4] that the magnetic  field be 
extended beyond the electrode zone or that nonconducting b a r r i e r s  be located at the entrance to and exit f rom the 
electrode zone. If the magnet ic  field is extended beyond the electrode zone, the power increase  exceeds the 
diss ipat ion inc rease  and the genera tor  efficiency reaches its maximum value when the magnet ic  field is extended to 
infinity. 

If we examine th ree -d imens iona l  p rob lems ,  the closed t r a n s v e r s e  cur ren t s  increase  signif icantly the value of the 
Joule diss ipat ion even for very smal l  boundary layers  [5]. 

In the following we study the th ree -d imens iona l  e lec t r ic  field d is t r ibut ion for s ta t ionary flow of an isotropical ly  
conducting fluid in a MHD channel with semi- in f in i t e  electrodes a nd  calculate the Joule diss ipat ion,  power, and 
efficiency of the generator .  

1. Consider a rec tangula r  channel (Ix[ < ~, [y[ < 6, I zl < a) whose walls are  everywhere nonconducting (Fig. 1) 
except for the two semi - in f in i t e  e lectrodes  x > 0, y = �9 6. 

Through the channel flows an electroconductive fluid with constant conductivity a and given velocity V(x,y,  z). The 
channel is located in the external  magnet ic  field B = B(x,y,  z), which is negligibly dis torted by the induced currents .  

Then, following [6], the cur ren t  and potential  d is t r ibut ions  can be found from the equation 

with the following l imi t ing  conditions 

A~ ---- B rot V (1.1) 

~=:k% for y=:kS, z>0 (1.2) 

j~=~(O,p_~_+]• = 0  for y=:t=8, x < 0  

]~=a---~-y+g~:----Ofor,=:ka, ]x]<~ (1.3) 

) V x B  [ V x B  
/ •  (z ,  z . .  --7- ,~=+_~, g+ (x, y) c ~=+~ 

B .--+ O , O g .--~ O , r .--~ O f o r ~ - ~ - - o o  

B -~ Boo (y, z), V.--*V(y,z)e~, 0~-oO for x - . + ~  

We assume that the velocity is a symmet r i c  function with respect  y and z and that B~o(x, z) is a symmet r i c  
function with respect  to z. 

We introduce the auxi l iary potential  r = (p - ~0, where ~p(x, y, z) is the unknown solution of the problem and 
(P0(x, y, z) is the solution of (1.1) with boundary conditions (1.3)-(1.4) for ix[ < ~o, i .e . ,  the solution of the analogous 
problem for the channel with everywhere  nonconducting walls.  

Then we obtain the Laplace equation for r 

a ~  = 0  (1.5) 

and the boundary conditions 
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~p=+_%(x ,~6 ,  z )=(T-%)- - r  ( y = ~ 8 ,  ~>o) 

O~p/ay=Ofor y•  ~<o; o~p/az=O f o r y = : t : 8 ,  I z !< :~  

~ - - ~ 0 f o r ~ - ~ - - o o ,  a r  f o r ~ - ~ + o o  

(1.6) 

(1.7) 

(1.8) 

The p rob l em solut ion for  r = ~v - q~o is  sought in the fo rm of the expansion 

= T ~ ~' ~p~ (x, y) cos 

COS 

The potent ia l  cp0(x , y ,  z) is  [6] 

% = T cp~ 0 sin r,y 
k = l  

Co ytkz  
@ ~ (p~ sin rny cos T 

r n  ~ 8 

(1.9) 

(1.1o) 

( L i D  

Setting y ==~ 6 and compar ing  coeff icients  in (1.10) and (1.11), we obtain 

Hence 

( i . i2 )  

,Peo= - ~  + T  (--1)  %o, %k= + ( - - t )  q ~  (1.13) 
n ~ l  7z~ l  

Thus, if the veloci ty  p rof i l e  and the magnet ic  f ie ld a r e  given,  the r e su l t s  of [6] define the coeff ic ients  of the 
expansion of the function ~v0(x , y),  while the coeff ic ients  of the expansion ~e0, ~ek a re  ca lcula ted  f rom (1.13). 

Fig. 1 

We a s sume  that  the appl ied magnet ic  f ie ld is  approx imated  by the s tep function 

B = (0, 0, Bz (x)}, Bz = 0 (x -<< --Z), B~ = Bo (z > --1) 

The veloci ty  prof i le  is spec i f ied  so that  it  s a t i s f i e s  the no-s l ip  condit ions at the  wal l s  : 

oo 

u = {Vx(Y, z), O, 0}, V~(y, z) ---- Vo ~.z ~n(z)c(~s rny 

8 

~,~ (z) = "-~o ' V "  Vs = I V~ (y, z) cos r~y dy, %~ (-4- a) = 0 
K S  
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Then  

r- 8 
~.n~ A ~ ( e x p [ - . l x , ~ e ( x - l - e ) ]  ~ l)-= A = -Tan~ (exp [ - -  txn~ (x @ e)] - -  2) 

VoBo t ~ ~k 
A = ~ - ~ - - ,  ~a~=- f f -  j Zn(z)cos~kZdz,  ~ , ~ = r n  ~-+-~,~, ;% = - -  

a a 
--ct 

Subs t i tu t ing  ~Vnk into (1.13), we obta in  

-~- ~,  ( - -  l)~a,0(exp [ - -  ~tn~ (x + / )1  - -  2)] 

A c~ 
~ k  = - ~  ~,  ( - -  t )~a~  (exp [ , 1 ~  (x + )] --- 2) (1.14) 

The func t ions  Ck(X, y) m u s t  be  found f r o m  the fo l lowing  s y s t e m  of equa t ions ,  ob ta ined  a f t e r  subs t i t u t i ng  ~ in the  
f o r m  (1.9) into the  L a p l a c e  equa t ion  (1.5) and the condi t ions  (1 .6 ) - (1 .8 ) :  

A ~  - -  ~ = 0 (1.15) 

0% = 0  (y=:t :6,  ~<0) (1.16) ~ = ~ : % ~  (y=:[:~.  ~ > o ) ,  ~ -  

~ - - * 0 ,  x - ->~  co, O*~/Ox.->O, x - > +  ~ (1.17) 

2. Apply ing  the t w o - s i d e d  F o u r i e r  t r a n s f o r m a t i o n  

r (a, y) -- (2n) % ~ (x, y) e iax dx 
- -03  

to (i. 15), we obtain 

d 2Ctp k 
dy~ 7 ~ k  =: 0, ~..~ = ~2 + a (2.1) 

Bounda ry  condi t ion  (1.16) i m p o s e s  on the  func t ion  6 k ( ~ ,  y) the  r e q u i r e m e n t  tha t  i t  be  odd with  r e s p e c t  to y. The  
so lu t ion  of (2.1) s a t i s f y i n g  th i s  r e q u i r e m e n t  t a k e s  the f o r m  

If we in t roduce  the  func t ions  

r y) = A a ( ~ ) s h T k g  (2.2) 

c~ 

O~ + (~, y) = 1 I ~ (x, y) e ~ax dx 
(2g) '/2 

o 

@k- (~c, Y) = ~ i ~k (x' y) ei~'X dx 
- -oo  

(O~+) ' =  e ~ d x ,  (qlk-) ' - -  (2n),/, --~ 

then ,  u s ing  (2.2),  we obta in  the  s y s t e m  

(P~- (r162 y) -4- Ok + (a, y) = Ak (a) sh 7~ Y (2.3) 

Oh-' (a, y) + q)~+'@, y) = Ah (cr chTk y (2.4) 

• - V  

We se t  y =•  6 in  t h e s e  equa t ions .  Then  6k(O~, 6) and 6 k  (c~, 6) a r e  known by v i r t u e  of condi t ions  (1.16). Th is  
m a k e s  it p o s s i b l e ,  a f t e r  exc lud ing  the  unknown funct ion  Ak(c~), to  obta in  f r o m  (2.3) and (2,4) the  equa t ion  in 4,~'(c~, 6) 
and 4,t~(~, 6) : 

~Pk +' (ct, 5) = 7~ cth 7k15[~ k- (a, 5) + O~ + (a, 6)1 (2.5) 

+ l  

This  func t iona l  equa t ion  is  the  W i e n e r - H o p f  equat ion.  In o r d e r  to  s tudy th i s  equa t ion  the  funct ion  ~k (~,  6) i s  
de f ined  us ing  (1.14) : 
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m,?(=, ~) =--A--~ ( ~ oo ~ 'a  e/_2(__~,:,~___~Ol 
n=[ 

+ 

We factorize the function K(~) = yk 5 cthYk6: 

f [  t r ~  ~F b,,8i~ 1 t 
K ~  ~: (a )  = Vi + am'~,~52 T am6ia ' am  - -  x m  ' bm - -  :~ (ra - -  :b-) 

Here K~(~) and Kk(a) are functions of the complex pa r a me t e r  ~, regular ,  respect ively,  i n  the half-planes 

a > -- Vlk = V t @" al~5~l 2 

After these t rans format ions  (2.5) takes the form 

6 0  + (a, 6) A oo e-P.nkl 

+ ~ A  KF (0) T -  ~ - K2(~) @~-(~, 6) 
(2.6) 

+ ~ co -~,~ [K~ +(~) _. K~ +(@"~)] 

A ~i  
(2:~)'h ~- [K~-(o 0 -  K~-(0)] 

Let us study the region of regular i ty  of this equation. We f i r s t  examine the functions ~ ( a ,  6) and ~k(a,  6). 
vir tue of condition (1.17) the function ~b k -- 0 as x --  - ~ ;  therefore we assume 

[ ~ [ < C ~ e  - ~  for x- . - -oo  

(y = const, ~g = const=/=0) 

As an example,  let 

By 

V ~ ~ K  ~ 

Then, in accordance with [8], the function 4~(a, y) will be regular for ~- < #ik, where T = Ima. Sinee d~bk/dX~0 

as x ~ ~o, then ~k ~ const for any fixed y as x ~ ~. 

+ 
Consequently we have that l~kl < C2 as x -- + ~, i.e., the function ~k(~, y) is regular for T > 0. Thus the region 

of regularity of the function ~k(~, y) will be the strip 0 < r < glk o* 

Illllllilit]tlltll",  ,lLlttllllttllllll]ll 

Fig. 2 

We denote the r ight-hand and lef t-hand sides of (2.6) by I1(r and Iz((~), respect ively.  The functions appearing in 
Ii(v~) are such that Ii(a) is regular  for ~r k < ~lk, while Iz(a) cons is t s  of functions which are r egu la r  for Tk> 0. 
Consequently, the region of regular i ty  of the Wiener-Hopf equation is  the s t r ip  0 < ~'k < #k" If we continua 
analytically the regular  branches  Ii(c~) and I2(~) into the ent i re  plane, we obtain the function I(c0 = Ii(cd = I2(a) , which 
is regular  over the ent i re  region. 

*Inequalit ies (2.7) and (2.8) are  obtained as a corol lary  of ra ther  s trong assumptions  about the behavior  of ~k as 
x ~ • ~o. These assumptions  are  l a t e r  confirmed by the constructed solution. 
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To e s t i m a t e  the growth  of the  func t ions  I~(o~) and Iz(a) as a ~ ~ and c~ ~ - ~,  we a s s u m e  that  the fol lowing 
condi t ions  a r e  m e t :  

~y(X, 6)-~xV, f o r ~ - , + 0 ,  

Then,  fol lowing [8], we can s ta te  that  the e s t i m a t e s  

o~+'(~, ~ ) ~ I ~ 1  z,, l a l ~ o o ;  

a r e  va l id ,  which toge the r  with the known e s t i m a t e s  

g i "  (a) ~ I~ IV,, l~z I--+ oo; 

~ ( x ,  5)--~const for ~ - - 0  

CF(~, ~ ) ~ l ~ l  -~, I~1 - ~  

K ~ ( ( z ) ~ l a l  'h, I~ l~oo 

m akes  it poss ib l e  to c la r i fy  the b e h a v i o r  of the func t ions  It(o~) and Iz(~) as [~] ~ ~o in  the c o r r e s p o n d i n g  ha l f -p l anes .  

We find that  

I I~ (a) ] < C~ I a I -'/' for  I a I -+ ~ ,  v < I~ 
l & ( ~ ) l < C ~  - '  for ~ --~ oo, % ~ 0  

Then,  on the ba s i s  of the g e n e r a l i z e d  Liouvi l le  t h e o r e m ,  I(o~) ~- 0 ove r  the e n t i r e  ol -plane.  Equa t ing  I 1 (o~) and 
§ 

I2(o~) to zero ,  we have two equa t ions  for  d e t e r m i n i n g  the two unknown func t ions  ~k (oz, 6) and ~ (c~ ,  6). It suff ices  to 
know one of t hese  func t ions  in  o rd e r  to f ind A(oz) f rom (2.3) and (2.4) and then  obta in  

A 0 r f~ 

oo n K~: § (a) sh T~Y + ~ ( - - l )  n ankeXp(--[4nkl) iK~(i~k)J,  O(a, y ) -  
n=l ~ -t- i~'nt: 2Tk6 ch T~} 

Appl ica t ion  of the i n v e r s e  F o u r i e r  t r a n s f o r m a t i o n  to �9 k y ie lds  

~Pk (x, y) = (2~)V, ~ gPk (a, y) e - ~  da (2.7) 
iC.k--~ 

The i n t eg ra t i o n  path  l i e s  in  the s t r i p  of r e g u l a r i t y  of the func t ion  ~k(~ ,  y), i . e . ,  0 < Ck < #lk.  Subst i tu t ing 
�9 k ( a ,  y) into (2.7), we find 

~%+co 
~k (x, y) = - -  ~ -  ~ Oe - i~  da 

--ick--co 
ick+oo 

A i ~  f Oe-iaXda (2.8) 2a (-- l)na~K~ (ign~) e-~k z (~ + i~nk) 
n = l  --ick--oo 

The i n t eg ra l s  in (2.8) a r e  ca lcu la ted  with the  aid of r e s i d u e  theory  s e p a r a t e l y  for  x < 0 and for  x > 0. Knowing the 
coeff ic ients  of the expans ion  Ck(X, y), we can  use  (1.9) to find ~(x, y ,  z) in  both reg ions .  Since the funct ion  ~o0(x, y,  z) 
ca lcu la ted  us ing  the f o r m u l a s  of [6] has d i f fe ren t  ana ly t i c  r e p r e s e n t a t i o n s  in  the  r e g i o n s  x > - 1  and x < - 1, the 
unknown poten t ia l  ~p = r + (P0 has d i f fe ren t  r e p r e s e n t a t i o n s  in the  t h r e e  r eg ions  (see Fig.  2): 

{~ ,  i [ (_ l )Sbos_  exppo~l]expF~osxsinrsy r (x, y, z ) =  A - T  ao~ 

-}- ~, ~ [(--t)Sbks--a~sexpy~ksl]exp~k, lsinGycos~.kz} 

x ~ [ - -  ~ ,  - -  l ]  (2.9) 

q~ (x, y, z) = A { ~, + [(--  i)~bo~ exp [~os -~- ao~ (2 - -  exp [~o~ (x + / ) ] ) ]  sin s~y 
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+ .~, ~, [(-- l )  ~ b~ exp ~ x  + a~ (2 - -  exp[ - -  ~ (x+/ ) l ) l~ in  r~y cos Z~z} 

x ~ [ - - l ,  O ]  (2.10) 

Y ,'3 I s q~S (X, y, Z) = A h o t  + ~ 7 [( - l )  c0~exp(-- ~o~z)sinpsy 

oo [ h~ sh (~ky 
2ao, s in r,y] + ~,  ~ ~kd ch ~ka \'-~-'] 

+ ~ ((--  t)Sc~ 8 exp ( - -  ~r sin psy - -  2a~. sin rsy)] cos Xkz 

x ~ [0, r162 ] (2.11) 

In (2.9)-(2.11) we have in t rodueed  the nota t ions  

~s ~(.~_1/~) ~ . _  .~k rsX~s5 ak~ ~ 
2 

c o  

[ s  - -  ~ k s  - 

/~(a)---K(~(~ ) S(ao) = i l imK~+(a)(a - ao) 

3. The c u r r e n t  dens i ty ,  Jou le  d i s s ipa t ion ,  and power  in  the channel  a r e  ca lcu la ted  f r o m  the f o r m u l a s  

; ,  (3.z) 
\Oy " c 1'  

cO a 

O = - .-~-dxdydz = Q t +  Q ~ +  Qa (3.2) 
�9 , - - . o o  - -  - -  

N = 2%1(6) (3.3) 

whe re  I(5) is  the tota l  c u r r e n t  f lowing through the e l ec t rodes  into the ex t e rna l  load. 

 //lf 
7 

t4 K = O,~ .. 

Z 

Fig. 3 

t/ 5 

The magn i tudes  of the c u r r e n t s  and d i s s i p a t i on  were  ca lcu la ted  s e p a r a t e l y  in  each of t h r e e  zones  : in  the p r e -  
e l ec t rode  zone without the m a g n e t i c  f ie ld  [ - 0 % - l ) ,  in  the p r e - e l e c t r o d e  zone in  the p r e s e n c e  of the  m a g n e t i c  f ie ld  
[ - l ,  0], and in  the  e l ec t rode  zone in  the p r e s e n c e  of the  magne t i c  f ield [0, oo]. The Jou le  d i s s i p a t i o n  is  denoted in these  
zones  by the symbols  Q1, Q2,Q3, r e spec t ive ly .  In zone 1 (Fig. 2) d i s s i p a t i o n  is  caused  only by c u r r e n t  c ross f low f r o m  
zone 2 and is  def ined by the f o r m u l a  
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c o  

q l = ~a,3A' [~ :  + (~to, (bc,' exp (-- 2~o,/) -- 2ao,bo, exp (-- Bo.l) H- ao.') 
co  c,:} 

k = I  s ~ l  

In zone 2 diss ipat ion is caused by the longitudinal cur ren t s  (the two-dimensional  crossflow pat te rn  of these 
cur ren t s  is presented in [1]), and also by the closed t r a n s v e r s e  cur ren t s ,  which are analogous to the cur ren ts  in the 
Hartmann problem. For  Qg. we have the fo rmula  

c o  

Q2 = ~aSA ~ { ~  [~os (exp (--2]~os/) -- I) ~los (exp (-- ~os/)- I) + ~osl] 
- $ : 1 - -  

oo oo 

k~l s : l  

Here 
~oa = ( ~ k  ~ ak~ ~ - -  b~,2)l-th,  

�9 - - -  - -  ' ~ g s  _ 

The express ion  for aks, bks , #ks ,  rs  are  wri t ten  out above, and mkf  , f~k equal, respect ively ,  

tn~s=-~ V~B~cos a d z ,  ~=  k>~t 

From (3.5) follows 

Q ~ - > 0  a s  l - - > 0 ,  Q ~ o o  a s  l - - ~ o o  

Final ly,  in zone 3 diss ipat ion is also caused by the longitudinal and t r a n s v e r s e  cur ren t s ,  but here  in contrast  
with zone 2 par t  of the t r a n s v e r s e  cur ren t s  makes a contr ibution to the useful power. As a resul t  of the t r a n s v e r s e  
cur ren ts  the diss ipat ion Q3 is infinitely large.  Therefore  Q3 was calculated for the fixed section of the channel with 
electrodes of length L: 

co  

<2" A ~aSz 
s = l _  

c o  c a  c o l  

+ 5 k + ~ ,  ~..~ ) L +  'if,. v~:~ck,~(l--exp(-- 2v~L) 
~ I  S= I  ,~ S : I  

The notations in the express ion  for Q3 are the same as in (2.12)-(2.14). To calculate the power we r e so r t  to 
computation of the total cur ren t  I(6) using the formula  

I (6) - ~ ]ydx dz 
a - a  

in which the upper in tegrat ion l imit  is replaced by L, thereby assuming that the electrodes have finite length. The 
potential at the electrodes can be expressed in t e r ms  of the load coefficient k:  

% = kV<,,> B5 

where V@> is the channel sec t ion-average  velocity, and then formula  (3.3) for the power is wri t ten as 

c o  

N=2~(V<,~B)26~2- L ~- 6 l- - g ~  cos t --exp(--vu~L) 

4. The study of the values of the power, Joule dissipat ion,  and efficiency of the genera tor  is made under the 
assumption that edge effects show up only upon entry into the magnet ic  field and into the electrode zone and also that 
the e lectrodynamie pa rame te r s  are prac t ica l ly  unifromly dis t r ibuted along the ehannel length. Then the power N and 
Joule diss ipat ion Q can be considered as the sums of two t e r m s ,  the f i rs t  is  the value of the power or diss ipat ion which 
appears as a resu l t  of the edge effects owing to the displacement  of the magnetic  field beyond the electrode zone; the 
seeond t e rm is the value of the power or diss ipat ion which is d i rect ly  proport ional  to the electrode length L (here the 
value of the power coincides with that calculated using one-dimensional  theory). In the express ions  for the power and 
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dissipat ion,  assuming L / 6  z> 1, we can neglect the exponentially decreas ing  (as L ~ ~ t e r m s ,  i .e . ,  t e r ms  reflect ing 
the fact of current  nonuniformit ies  at the entrance to the electrode zone, such as the format ion of closed loops in the 
longitudinal sections of the channel and curvature  of the s t reaml ines  as they flow around these loops. Es t imat ing  the 
length L, for which we can neglect the t e rms  containing L / 6  in the exponent, we es tabl ish  the l imi t ing  electrode 
length L beyond which we can consider  the current  and potential  d is t r ibut ions  constant along the channel,  and the power 
and dissipat ion can be calculated using two-dimensional  theory. 

z 4q . ~ :  

, ._. ,  I / / - - '~ l  "~k:t~5 

i 8 g 

Fig. 4 

To construct  examples of the behavior  of the genera tor  power, Joule dissipat ion,  and efficiency we specified a 
s imple velocity profile 

+ ~o~ - Z - )  co~ - ~ -  

satisfying the no-s l ip  condition at the channel walls and corresponding to boundary layers  of considerable  thickness 
(obviously the role of the t r a n s v e r s e  cur ren ts  is overes t imated in this case). 

0.2, 7/ ] 

o 1 3 

Fig. 5 

d=8.g 

d=3 

5 

In this case the power was calculated by means  of the formula  

r 
N.~.2n(V(u>B),8~_~ri--k L + (i--k) ~. P 

co 
1 --ul  x-~ p (i--k) ~ P ~,y,--upL 

-- ~-exp ~ ~jlo=1 (2P ~ 1)~ ~z p_zp(2p-- t ) _  8 
aO Cx~ 

' ( m  ~ t )  ( m - -  p) 
(4.1) 

The formula  for calculating the Joule d iss ipat ion is not presented here because  of the length of the express ions ,  
but the Joule diss ipat ion can be represen ted  as a function of the pa rame te r s  l / 8 ,  L/6,  8/a and the loading coefficient 
k in the form 

3 

Q -~ (y<u>B)' o8 s [a~ (k) -~ ]j (sj, k)] exp 28 

+ [b~ (d) + @j (s~, d)] exp 8 " 

[ ' ],} -~-[Cjl(k)-~-Cj~(d)]~ --~ t - -  4 ( d ~ . ~ 0 . 2 5  j -~ -  

--nP~iL ~j----~l ]--~2, 11=[2 / '= i, 2 d ~- 5.~,a s i ~ rapi exp ~ ,  [2 ] ~-- 3 

The coefficients f j ,  Cj ~(j = 1,2,  3) will be functions of the infinite sums sj,  which contain in the general  t e r m s  the 
infinite products mpj and the p a r a m e t e r  L / 5  in the exponent. The t e r ms  in (4.27 which contain in the exponent only the 
pa ramete r  1/~ are due to the longitudinal cur ren t s  flowing outside the electrode zone, i.e, the longitudinal edge effect; 
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those t e r m s  which contain in the exponent both 1/6 and L /6  cor respond to the longitudinal closed and nonuniform 
cur ren t s  at the boundary of the e lec t rode  zone. The two t e r m s  which are  l inear  in L /~  and l/5 are ,  r e spec t ive ly ,  the 
par t  of the diss ipat ion owing to cur ren t s  which a re  uniform ac ross  the sect ion in the channel e lec t rode  zone and the 
par t  of the diss ipat ion owing to the closed t r a n s v e r s e  cur ren t s ,  i .e . ,  the t r a n s v e r s e  edge effect. 

In (4.1) the las t  two t e r m s  can be neglected for  L/6 ~ 4, i .e . ,  if the e lec t rode  length exceeds the channel height by 
a fac tor  of two. 

We denote the d imens ion less  p a r a m e t e r s  l/6 and L/6 by the l e t t e r s  g and h, respec t ive ly ;  then the express ion  for  
the power,  reduced to the d imens ion less  fo rm N* by dividing by (V(u)B)2~3o, is wri t ten  in the fo rm 

N*=AN(~'k) N o(h,k) 
d -t- d 

O3 CO 

p=l =~ (2p~--- t) 2 

iv o (h, k) = 2k (t -- ~)h 

The t e r m  AN(g,k) re f lec t s  only the influence of the edge effects.  Calculations made on a BESM-3M computer  
showed that extending the magnet ic  field beyond the e lec t rode  zone inc reases  the power. We see f rom the var ia t ion  of 
AN with the magnet ic  field extension p a r a m e t e r  g (Fig. 3) that AN reaches  a maximum value for  k = 0.5, just  as 
N~ does. The rat io  of the power inc rease  AN owing only to the longitudinal edge effects  to the power N*,  
calculated inside the e lec t rode  zone, amounts to 6.5% for  the magnet ic  field extension p a r a m e t e r  g = 3, loading 
coefficient  k = 0.5, and h = 4. 

Dropping in (4.2) the sums analogous to those dropped in (4.1) for  the power  and reducing the express ion  for  the 
Joule  diss ipat ion to d imens ion less  fo rm,  we wr i te  the express ion  thus obtained for Q* as 

Q*= AQ(g, k, d)+ QO(h, k,d) 

The quantity AQ(g, k, d) is the diss ipat ion inc rement  owing to the longitudinal and t r a n s v e r s e  cur ren ts  outside the 
e lec t rode  zone. Neglect  of the sums is valid for h -> 2. A plot of AQ as a function of the field extension dis tance g for  
var ious  loading aoe f f i c i en t skandf ixed  ra t io  d = 3 of the channel t r a n s v e r s e  dimensions is  shown in Fig.  4. The 
calculat ions made for d = 0.2, 0.5, and 2 showed that,  just  as for  the case  d = 3 shown in Fig.  4, AQ i n c r e a s e s  
l inear ly  with r e spec t  to g as a resu l t  of the closed t r a n s v e r s e  cur ren t s ,  which also follows f rom (4.2). 

The genera to r  eff iciency was calculated using the fo rmula  

N 
~ -  N + Q  

where  the power N and diss ipat ion Q were  calculated using (4.1) and (4.2), in which h was taken equal to four. F igure  5 
shows ~ as a function of the magnet ic  field extension for  k = 0.5 and var ious  d. It is obvious that the genera to r  
eff iciency may d e c r e a s e  with extension of the magnet ic  field beyond the e lec t rode  zone s ince diss ipat ion i n c r e a s e s  as 
a resu l t  of the t r a n s v e r s e  effect. If the power increment  AN and, consequently,  the ent i re  value of N inc reases  with 
extension of the magnet ic  field r e g a r d l e s s  of the channel geomet ry ,  then the genera to r  ef f ic iency is  essen t ia l ly  
de te rmined  by the p a r a m e t e r  d -- the ra t io  of the channel t r a n s v e r s e  dimensions.  

The eff iz iency calcula t ions  showed that its value depends on the e lec t rode  zone length L, and for smal l  L / 5  the 
eff ic iency may reach  its maximum value not with t e rmina t ion  of the magnet ic  field at the end of the e lec t rode  zone but 
r a the r  for some extension of the magnet ic  field beyond the e lec t rode  zone. 

We note that as d ~ 0, i .e . ,  when the channel is s t re tched out in width and can be considered two-dimensional ,  
the contribution of the t r a n s v e r s e  edge effect  to the value of the diss ipat ion diminishes .  

In fact ,  in (4.2) the t e r m  re f lec t ing  the t r a n s v e r s e  edge effect has the fo rm 

1 ' 1 Q.=(t-4r T ( Q ' ~  o, d--, o) 
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If we examine Fig. 5 it is c lear  that for any finite d, no mat te r  how smal l ,  beginning with some value of l / ~  the 
curve begins to fall  off as a resul t  of the t r a n s v e r s e  edge effect. However, if at the same t ime d ~ 0 and 1/6 ~ ~o the 
curve inc reases  asymptot ical ly,  which conf i rms the r e s u l t  of two-dimensional  theory stat ing that the efficiency 
reaches its maximum value when the magnetic  field is extended to infinity. The low absolute values of the efficiency 
shown in Fig. 5 arb explained by such factors  as the velocity profi le ,  which inc reases  the t r a n s v e r s e  edge effects, the 
sharp t e rmina t ion  of the magnet ic  field ra ther  than a smooth dropoff of the field to zero outside the electrode zone, and 
the short generator  length (L/5 = 4). In actual instal la t ions account for these factors  resul t s  in considerably higher 
efficiency. 

The author wishes to thank S. A. Regi re r  for posing the problem and his in te res t  in the study and V. I. 
Kovbasyuk for helpful discussions.  
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